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CHAPTER 1

INTRODUCTION

1-1. Objectives and Summary.

This thesis will be essentially devoted to the development of a
decomposition method for solving large linear programming problems
arising from N interconnected linear systems. These problems, which
will be referred to as linear interconnection problems, can be stated

1
as follows:
(1) Minimize Z = cx subjectto Ax = b, x > 0 where the coefficient

rnatrix A has a structure of the type

(2) | A 1] 171 (-1

| A SERIEIED

We point out immediately that the mulstistage linear problem
concerned with dynamic situations having a finite number of time periods
is a particular form of problem (1), whose coefficient matrix has the

staircase structure

The notations adopted in this repoct are explained in section
2 of this chapter.




(3) I A -1

where the matrices Al, A2 and A3 might be identical.

Linear programs having a coefficient matrix similar to matrix
(2) might represent, for instance, optimization problems arising from
the cooperation of three economies (or industries) whose production
functions are assumed to be linear. In such a case the matrices Al,
A2 and A3 would represent input-output coefficient matrices of econ-
omies 1, 2 and 3 respectively, whereas the connection matrices I and
-1 would represent importation and exportation matrices. The objective
function, in this case, could be thought of as a common social welfare
function {32, p. 47] which has to be optimized.

In this report we first develop two decomposition methods for
solving the special class of linear interconnection problems for which
the above matrices Al, A2 and A3 are Leontief matrices. Although
the solution methods for this type of problem might have a wide range
of application -- notably to the study of Leontief economic models and
sequential decision problems [16] -- it is not the practical usefulness
of these models which motivated their extensive development in this
report, but rather the fact that, as far as mathematical programming

s concerned, they have an ideal behavior which gives us valuable in-

sight into more complex problems.




In chapter Il we introduce the simplest decomposition approach
which one might conjecture would work, i.e., a method based on com-

munication of prices only. We refer to this method as a price-com-

munication decomposition method. In chapter III, which is the core of

this study, we develop a decomposition method for solving linear pro-
gramming problems of type (2) for interconnected Leontief systems.
This method, which is called deccmposition method by square-block
triangularization, is extended in chapter IV to general interconnected
matrices. The essential ideas underl ying this decomposition method
are the following.

Given a basic {easible solution to a linear program of type (1)
we shall transform this problem into an equivalent linear program which

will have a feasible basis in the following square block triangular form

F=TiiE=r.

B =10 B2 E3
0 0 B3
2

where the submatrices Bl, B and B3 are square matrices. Next,
we shall see that we can find an improved solution of this equivalent
problem by solving, via the simplex method, a smaller subproblem
called the improvement subprogram. If this improved solution is not
optimal, we set up another equivalent problem which, in its turn, will
lead to another improvement subprogram, and so on, until optimality

is reached.



The main features of the two decomposition procedures just
mentioned are the following:

(a) All the coefficient matrices of the improvement subprograms

have the following structure:

where
i : ) .th
A is the submatrix of A corresponding to thei system;

T’ (for j # i only) is a modified exchange matrix of the form

ls
™ =1 +0 =
2L 1
X X X X
X X . .X

Where Im is the identity matrix of order m.

(b) The exchange of information which is required between the

subprograms consists of

(i) the simoplex multipliers only for the price communication
decomposition algorithm of chapter II;

(ii) the simplex multipliers and the matrices Gj for the square-
block triangularization decomposition algorithm when ap-

plied to Leontief systems;




(ii1) the simplex multipliers, the matrices Gj plus some ad-
ditional information related to the feasibility of the solu-
tions when applied to general systems.

Remark. At this point it should be mentioned that when the decomposi-
tion principle of Dantzig ~nd Wolfe [9, ch.23], [14] and [15] is applied
to solve problem (1), its master program behaves to some extent like
an improvement subprogram of the square block triangularization de-
composition method, whereas its subproblems are rather similar to
those obtained by the price communication decomposition method.

(c) The decomposition procedures considered in this report are

symmetric in the sense that

(i) all subprograms have the same structure:
(ii) the exchange of information between the subprograms :s the
same in all directions.

This feature might be of importance when a horizontal decentralization
of the decision making process becomes necessary. By this we mean
that no hierarchy exists between the interconnected systems. For in-
stance, problems concerning the cooperation of several independent
economies would certainly require this type of decentralization.

(d) The decomposition methods are always primal feasible.

By this we mean that, at any stage of the decomposition, basic feasible

solutions to the original problem as well as the subproblerns are known.
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The idea of taking advantage of the square block triangularity
of the bases is, of course, not new. In particular, Dantzig [11] has
applied it to solve dynamic Leontief systems with substitution, and has
even suggested an interesting decomposition method for solving multi-
stage problems which is based on artificial square block triangular
bases, [10] and [12]. However, the computations required by this
last method appeared quite complex, and it seems that it has not at-
tracted much attention, especially since the discovery of the decomposi-
tion principle of Dantzig and Wolfe which promised much mo r.e elegant
solutions for these multistage problems.

Then, in recent years, came the development of methods which
are basically variants of the simplex method adapted to special struc-
tures of large scale linear programming problems. All these methods
take advantage of the observation that ''the inverse of the basis in the
simplex method serves no function except as a means for obtaining the
representation of the vector entering the basis and for determining the
new price vector'" [13, p.1]. Among these methods we mention for
their approach the primal partitioning programming procedure, Rosen
[34]; the pseudo-basic variable procedure, Beale [6]; the compact basis
triangularization method, Dantzig [13]; and very recently, the dualplex

method, Gass [23].




We must also mention that Abadie [3] has shown that, under
certain conditions, if the decomposition method of Dantzig and Wolfe
is specialized to obtain basic solutions at each iteration, then it be-
comes nothing else than a variant of the simplex method for which the
inverse of the current basis is computed by partitioning. We believe
that this observation is important because it indicates that, provided
an adequate exchange of information takes place, the primal simplex
method lends itself to decentralized computations. Since there is no
good reason to think that the simplex method which has proved to be
very efficient for the solution of small linear programs will not be as
well adapted to the solution of large ones, it seems that efficient de-
composition methods for solving the latter might well be sought within
the framework of the simplex method.

To conclude these remarks we observe that the main factors
which have to be considered in the choice of a decomposition procedure
are

(a) the structure of the basis;

(b) the partitioning imposed (if any) by the necessity of de-

centralization;

(d) the type of exchange of information between the subprograms

which is desirable.



1-2. Terminology and Notations.

In this report we shall adhere most of the time to the standard
terminology in mathematical programming, for which we refer te [9],
[21], [22], and [26], and for the rest we shall define the technical
terms and symbols as they are introduced. Therefore, only a few no-
tational remarks are in order here.

We first give a list of the principal notations used in this re-
port to best illustrate the conventions we have adopted.

A, BC,D,E,H,P,Q,R,S, T denote exclusively matrices.

|A| denotes the determinant of the square matrix A.

A'j denotes the jt column vector of the matrix A.

A, =A.j if no confusion is possible.

)
.th .
Ai' denotes the i row vector of the matrix A.
AJ denotes the submatrix of the (m X n) matrix A whose
columns are (Aj)je 3 where J2 N = {l,Z,...,n}.

A.‘.‘|r denotes the set of columns of A which are not in AJ

a, \, T, 4, v normally denote scalars.

b, ¢, d, x, t, w, y denote vectors. Note that no distinction is
made between row and column vectors.

b denotes the vector whose components are (bi)' ie J,

B normally denotes a feasible basis of a linear program.

g always denotes the inverse of the matrix B,
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e = (1,1,...,1) denotes the m-comporent vector al! of

whose components are one.
th
u = (0,...0, 1, 0...0) denotes the i unit vector whose

.th : . .
i coordinate is one and whose other cocrdinates are

zero.

I denotes the identity matrix of order m,

I, J, K denote sets of positive integers (indices).

M = {1,2,...m} denotes the set of positive integers from
l tom .
N_l = {1,2,.. .ni} denotes the set of positive integers from
l ton, |,
1
? denotes the empty set.
L always denctes the price vectsr ( simplex multipiiers)!

associated with a basis B,

Y always denotes the cost vector associated with a basis B.

By definition we have 7 B = vy,

\ always denotes a vector of basic variables associated
with a basis B. By definition Bw = b,

J = {j/xj is a basic variable} denotes the set of basic ac-
tivities; therefore, w = x _ .

J

Z always represents the value of the objective function.
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Unless otherwise specified, these notations will be consistently
used, and often without further explanation.

It remains to indicate briefly how the indices will be used. For
an iterative process we will adjoin an argument t to any quantity which

: . : th |
might vary. Thus, the basis B of a linear program at the t  iter-
ation will be denoted by B(t), the simplex multipliers by = (t) and the
values of the basic solutions by W(t). The next feature which requires
distinctive notations is the decomposition of a linear program into
smaller subprograms. In this case, all quantities relative to the i

. . , i i 1 ,
subprogram will have a superscript i, e.g. B (t), w (t), w (t) which
. . .th . .
are not to be confused either with the i  column of B(t), i.¢€., Bi(t),
. th
or with the i components of m(t) and w(t) ﬂi(t) and wi(t)

Finally, a word about our numbering system. Theorems, def-
initions, remarks as well as equations are all numbered consecutively
within each chapter. A rcference to an equation outside a given chap-
ter will be made by prefixing the chapter number to the equation num-
ber. The numbers in square brackets refer to books and papers listed

in the bibliography at the end of this report.
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CHAPTER 11
OPTIMIZATION BY PRICE COMMUNICATION

BETWEEN LEONTIEF SYS TEMSl

2-1. Introduction.

In this chapter we shall be concerned with large linear pro-
gramming problems based on interconnected Leontief systems whose
activity levels are unbounded and whose coefficient matrices have a

form similar to

— - — -4

where Al, A‘2 and A3 are Leontief matrices with substitution whose
precise definition will be given in the next section

We shall determine some important properties of this class of
problems by concentrating, in the following sections, on a decomposi-
tion procedure based exclusively on price communication between the
Leontief systems. It should be noted that this decomposition procedure

has only a limited practical interest for the following reasons:

lBasically, the ideas developed in this chapter were suggested
by Prof. G. B. Dantzig during a seminar on Computational Methods in
Mathematical Programming which was given during the fall semester
1962 at the University of California, Berkeley.

[}
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(1} we prove only that an optimal basis to the original problem
can be found 1n a finite number of iterations;
(ii) no optimality criterion is given;
(ii1) a better convergence to the optimal basis can be achieved
by another method described in chapter 3.

Nevertheless, as will be illustrated in chapter 3, we remark that for
the first iterations the above method could give good results and, there-
fore, might be efficiently used to find an improved initial basis to a
more complex decomposition approach. Also, it might be advantageous
to use the price communication decomposition algorithm in certain
cases where only near-optimal solutions are desired. However, the
main point of this chapter 1s not to present a working algorithm, but
to demonstrate that, under certain ideal conditions, the price com-
munication technique alone can lead to the selection of an optimal basis.

For convenience in exposition, we summarize in the next sec -
tion some properties of the Leontief systems which will be used through-
out this report. In section 3 we describe the price communication de-
composition procedure for two interconnected Leontief svstems and
prove some properties justifying its validity. The questions of con-
vergence and finiteness of the method will be dealt with in section 4
Finally, in the last section we briefly indicate how to extend the pro-

cedure to the case of N Leontief systems.




2-2. Review of Some Properties of LLeontief Systems.

We shall now, for future reference, briefly review some of
the important properties of Leontief systems. Most of the general
properties of L.eontief matrices can be found in an expository paper
by Woodbury [37], but we shall mostly refer to Dantzig and Wets [17]

and Gale [ 21].

(1Y Definition. An (m X n) matrix (m > n) is called a Leontief matrix

with substitution if and only if each column contains exactly one and

each row at least one element which is positive.

It should be noted that a coefficient matrix of a linear program
which is a Leontief matrix with substitution as defined by (1) can al-
ways be transformed by scaling the variables into a Leontief matrix

whose positive ‘elements are all equal to one, i.e., into a matrix of

the form:
{ 1 1 -a 5o oC -a
' 1, k+l le In
-a -a 1 -a =5
2
(2) A - el 2 e Ly
........................................ a >0
. -a ) T
am1 e e R IEEPEETREE )

Normally, it is this form which will be used in this report. In

the same way we define a simple Leontief matrix.

(3) Definition. A matrix B is calied a Leontief matrix if it is a square

Leontief matrix with substitution, i.e., if each row has one and only X

one element which is positive.



14

If a Leontief matrix of order m has the property that the sum
 the elements of every column is strictly positive, then the follow-
ing theorem holds.
(4) Theorem. If A is a Leontief matrix of order m and satisfies the
condition emA > 0, then the inverse of A exists and is a nonnegative
matrix, where em =(1, 1, . ., 1) or, more generally, em = (wl,

w w ) where w. > 0.
m i

gu = "

It will suffice to show the theorem for em = (1,1, . ., 1)
since the rows may be rescaled so that w. = 1 and then the columns
rescaled so that a. - ] for all i. There exist several ways of proving
this theorem. Usually the proof is based on the convergence of I +
A+ KZ + . . . where A is a nonnegative matrix defined by A -
I1-A and A" =0 as n - [21, p 301]. A different proof, based
exclusively on the properties of the simplex method, hence algebraic,
is given in [17]. ||

Considering now the linear program

(5) Minimize Z = cx subject to Ax = b and x > 0 where A is a Leontief
matrix with substitution, we state the following well known results,
detailed proofs of which can be found in [17].
(6) Lemma. If b is positive (b > 0), then any feasible basis to prob-

lem (5) is a Leontief matrix.

Proof. It suffices to note that the feasibility requires at least

one positive element in each row when b > 0. ||
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Remark. A stronger form of the same lemma -- namely, that
any basis to problem (5) to which corresponds a feasible nondegenerate
solution is a Leontief matrix -- can be proved in 2 similar manner.

(7) Theorem. If emA > 0 then there exists a feasible solution to prob-
lem (5) for any b > 0.

Proof. If emA> 0, then any Leontief submatrix B of A has,

according to (4), a nonnegative inverse. This implies that the basic
set of e tivities defined by w = B-lb is feasible for any b > 0. ||
(8) Theorem. If B is a feasible basis to problem (5) for a positive
b, then it is a feasible basis for any nonnegative b.

The proof of this theorem rests on the fact that if B is a feasible
basis corresponding to b > 0, then B-l is a nonnegative matrix; there-
fore, the same argument as above holds. The complete proof may be
found in [17, p. 21]. ]

(9) Theorem. (Samuelson) If B is an optimal basis to problem (5)
for a positive b, then B is an optimal basis for any nonnegative b.

Proof. The simplex mu.ltipliers n associated with B are in-
dependent of b and satisfy the dual constraints

(a) = Ai c
because B is an optimal basis. But, according to (8), B is also a
feasible basis for any b > 0; hence, the vector n is the same, the

relation (a) still holds and the conclusion of the theorem follows. ||

e
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(10) Remark. At this point it should be emphasized that theorem
(9) is not equivalent to the statement that the optimal selection of al-
ternative activities is independent of the right hand side b, as the fol-
lowing counter-example will show.

(11) Counter-example. Consider problem (5) with the data

1 1 0
A = [0_.5 1] and c = [1,2, 4]

It can be easily checked that

B

(a) if b = [1,0] then B' :1, 15 is an optimal basis

(b) if b = [1,1] then B' is not a feasible basis and the

]
optimal basis is B2 ={(l) 2]

(c) BZ is also optimal when b = (1,0]

This remark is not really restrictive when the coefficient matrix
A satisfies the condition emA > 0, because we know, by (7), that
there exists a feasible solution for any b > 0. Hence, in this case
when an optimal soluiion for any b > 0 is desired, it suffices to ap-
ply the following rule.
(12) Rule. If problem (5) satisfies the condition emA > 0, then by
solving it with an arbitrary b > 0, an optimal basis with the follow-
ing two properties if found:

(i) 1t is a Leontief matrix (theorem 6)

(ii) it is also an optimal basis for any b > 0 (theorem 9).
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2-3. Decomposition Procedure for Two Interconnected Leontiel

sttems.

We now present the decomposition procedure by price communi-
cation to solve a linear program of the form

Minimize Z subject to the constraints

20y, yiro xfzo
Alx1 + Imyl - Imy2 = bl
= Imyl + Imy2 + Azx2 = bz
cl:m{1 + dlyl + dzy2 + c?'y2 + czy2 = Z (min)

1

where A and AZ are Leont.ef matrices with substitution of size
(m X nl) and (m X nz) respectively, and Im is an identity matrix
of order m.

We make the following assumptions which will be used in later

developments:
(14) e A >0 for i:=1,2
m
(15) CIZO. czzo. dlzo. dzzo
(16) dl + d?' > 0

We shall relate the solution of problem (13) to the solutions

of the following sequence of subproblems.
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r Minimize Zl satisfying

leO, yl_>_0
1

alx +1yl - B
m

(17) a(t)

clxl + [dl + 1r2(t-l)]yl = Zl (min)

\

~

: . . 2
where b is an arbitrary positive vector and « (t-1) are the com-

municated optimal simplex multipliers from subproblem b(t-1) below.

/Minimize Z2 satisfying

2 &

x >0, y >0
(18) b(t) { _
Azx2 + 1 yZ = b2
m
czx2 + [d2 + ﬂ'l(t)]y2 = Z2 (min)

where BZ 1s an arbitrary positive vector and wl(t) are the communi-
cated optimal prices from subproblem a(t).

All these problems are well defined except subproblem a(l)
for which nZ(O) is not specified. In fact, instead of a(l), we choose

to solve the problem

Min Zl = clxl subject to Alxl = bl and xl > 0

This can be achieved by setting wZ(O) = ® and solving a(l) as stated
above.
We turn now to some of the properties of subproblems a(t)

and b(t). Our first task is to show that their optimal simplex multipliers
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Trl(t) and nz(t) converge as t increases.
(19) Lemma. Under assumptions (14) and (15), 1-rl(t) > 0 and
nz(t) > 0.
Proof. Note that (14) guarantees that feasible solutions to
a(t) and b(t) exist (see 7) and that, by assumption (15), Zl > 0 for
problem a(l). Hence, by the duality theorem, an optimal solution to
a(l) exists. Also, according to (12), we know that an optimal basis
to a(l), say Bl(l), is a Leontief matrix whose inverse is a nonnegative

. . 1 : :
matrix. Consequently, since the basic cost vector y (1) is nonnegative,

| . n
the simplex multipliers = (1) are also nonnegative, i.e.,

) = YstanTt s o

and, repeating the above argument for b(2), a(3),..., the conclusion
follows. ||

1 2 . . :
(20) Lemma. « (t) and = (t) are monotonically nonincreasing se-
quences.

Proof. Because the set of activities of a(l) is a subset of the

activities of a(2) it is obvious that
1
z'y >zl

|
Furthermore, since B is an optimal basis for any b > 0, we may

th

choose b = u. a unit vector with 1 in i*" component; we then have
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|
by the duality theorem Z (1) = -rr:(l) and 21(2) = 'rr:(Z) and this for

all 1 ¢ M. Hence,

() > wl(2).

But this implies that the cost vector of b(l) is greater than or equal
to the cost vector of b(2); hence, 22(1) > ZZ(Z) and by the same

argument as above

rrz(l) > nZ(Z).

. : 1 1

Similarly, assuming that 7 (t-1) > « (t) we show that
*rrz(t-l) > Trz(t)

thus completing the inductive proof of this lemma. ||
1 2 ] 1

(2¢1) Theorem. m (t) and = (t) converge respectively to =  and
T, as t—- oo,

Proof. By /19) and (20) both sequences are nonincreasing
and bounded below by zero So, they both converge. | |

We now turn 1o some definitions which will be used throughout
this report,

(22) Definition. We call respectively importation set of the ith

block and production set of the ith block the sets
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[ o]
A

{j/j ¢« M and y; is a basic variable}

1

J

{ilj e Ni and x; is a basic variable}

Accordingly we denote the vector of basic production variables

o ("j)j e J

and the vector of basic importation variables by

yp = (yj)j ¢ 1

Concerning these sets it will be useful to record that
(23) Lemma. Optimal solutions of two consecutive subproblems

a(t) and b(t) have the property that

Il.ﬂ\ IZ - 9
Proof. By definition
1 1 2 1
. (t) = d. + w. (t-1 if e 1
; (t) ; ; (t-1) )
and
Tff(t) = dj2+1rjl (t) if  je I2

Adding these relations we have

B~ 07 VR S RPN .

.
noAge

F
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njz(t) - nf(t-l) = djl +dj2>0 (by 16)
which contradicts (20). This completes the proof. ||

I.et us now examine how the solutions of subproblems a(t) and
b(t) are related to the solution of the original problem. First we
show that the matrix B(t) of this problem whose columns correspond

to optimal bases Bl(t) and Bz(t) of a(t) and b(t) is a feasible basis

for problem (13). It will be convenient to partition B(t) as follows:

Bl(t) E%()
(24) B(t)

"

El(t) B%(Y)

where we assume that the optimal bases Bl(t) and Bz(t) have their

positive elements on the diagonal and the columns of El(t) and Ez(t)

are defined by

Ei((t)—'-uJ if  jel, < =1, 2
(25)
= 0 otherwise
Remark. It should be observed that the assumption that the
positive elements of Bl(t} and Bz(t) are on the diagonals does not
restrict the generality of this exposition since the simplex algorithm
applied to Leontief systems preserves this characteristic; consequently,

1t suffices to put the original bases in the proper order.

(26) Lemma. B(t) is a feasible basis for problem (13).

Proof. Let us suppose that B(t) is a nonsingular matrix and

let us compute 1ts inverse ((t, by the partitioning method [26, p- 35).
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Denoting by ﬁz the nonnegative inverse of Bz(t) (which, according

to (4) and (6) exists) we have:

gl 52
B(1) =
6l B—Z
where
' - (B - E%(v) p%E ()7
52 ) -ElEz(t)ﬂZ
' - -p*El 0B’

BZ ) ﬁzEl(t) 62

ol
[ 3]
i

Under the assumption Il ) I'2 = @ we prove in chapter 3 that the

matrix h

B! - By - E%(v) plE (1)

is a Leontief matrix satisfying emBl > 0. Hence, by (4) its inverse
B’ exists and 15 a nonnegative matrix. As can be easily verified,
this implies that the remaining matrix equations of (26) are all de-
fined and are nonnegative. Hence, B(t) is a nonnegative matrix and
therefore B(t) is a feasible basis for any nonnegative right hand side
b. This completes the proof. ||

Thus far we have only seen that the simplex multipliers ﬂl(t)
and nz(t) converge and that our decomposition procedure gives us a
sequence of feasible bases B(t). To prove the validity of the whole
method it remains to be shown that the sequence {B(t)} will converge

in a finite number of steps to an optimal basis of problem (13). This

is done in the next section.

Sl aneidls



24

2-4. Convergence and Finiteness Proofs.

Let us turn now to the questions of convergence and finiteness
of our decomposition procedure. We shall first note that, if for any
two consecutive iterations the simplex multipliers are equal, then the
iterative process is ended. More precisely
(28) Lemma. If 'rrl(t—l) = 'rrl(t) or ﬂz(t-l) = vz(t) then the
basis B(t) is an optimal basis for problem (13).

Proof. Pricing out the activities of problem (13) with the

simplex multipliers nl(t) and nz(t) we have

c:l - ﬂl(t)Al

v
o

(29) c2 - Trz(t)AZ 2 0

a2 S EA =0

as a direct consequence of the definitions of vl(t) and 'rrz(t). How -

ever, nothing can be said about the signh of the expression

(30) al + 2% - »l(y

since the equivalent columns in the prcblem a(t) price out

(31) al + n8(t-1) - «t() = o

Nevertheless, when n’z(t) = nz(t-l) then (30) is identical to (31).
Hence, noting that nl(t-l) = -rrl(t) implies that ﬂz(t-l) = sz(t),

the conclusion of the lemma follows. H
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(32) Theorem. The limiting simplex multipliers ‘I'Tl

d %
x and m are

optimal simplex multipliers to problem (13).
Proof. It suffices to note that in the proof of the preceding
lemma
(i) the relations (29) must hold in the limit also;
(11) the expression (30) is asymptotically greater than or
equal to zero since wz(t-l) - sz(t) -+ 0as t » o, ||
So far we can conclude that, since -rrl(t) and T\’Z(t) converge

to "}:< and n

i, the decomposition procedure by price communication
tends to give an optimal feasible basis for problem (13). In fact we
shall show now that the choice of this optimal basis is reachedina

finite number of iterations.

(33) Theorem. An optimal basis B(t) to problem (13) is reached

in a finite number of iterations.

2
Proof. Let [®! (1), ¥'(1), ¥2(t), ®(t)] be the basic feasible

solution to problem (13) which is associated with the basis B(t). By

multiplying the rows of the coefficient matrix (13) by 'rrl (t) and
nz( t) and subtracting them from the cost form, it can be easily ver-

ified that the objective function Z(t) of (13) has the value

z(t) = wh(yb! + x¥(b% + [n2 ) - 72(-1)] T (.
| 2 2 .
According to (20), m (t) - n (t-1) < 0, therefore
z(t) < «l()bl + n¥(y)bt

Furthermore, also by (20), we know that there exists for a given

a > 0 an integer N such that

i

SN AL

g
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rtob! < nlbl 4+ a2

forall t > N
11'2(t)b2 < n:bz + a/2
Hence, oy theorem (32) we have
Z(t) < Z min + a for all t > N

Now, let us suppose that B® is a nonoptional basis of problem (13).
The corresponding value of the objective function, say Zo, can be

written as

2° = Z min + h (h > 0)

Therefore, if a < h, we have
Z(t) < 2° forall t> N

This means that, if t is sufficiently large, the nonoptional basis B°
cannot be chosen by our procedure. This holds for all nonoptimal

bases and therefore the conclusion of this theorem follows. ||

2-5. Extension to N Interconnected Leontief Systems.

The preceding analysis can be readily extended to the case of
N interconnected Leontief systems because it can be easily shown
that all the results of the previous analysis hold in this case also. To
1llustrate the procedure applied to such a case we consider the follov -

ing linear program stated in detached coefficient form:

Minimize Z subject to
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(34)
" xZ x3» ylZ y13 yZl Y23 Y31 y32 Constants
Al I 1 _I -I -I bl 2 0
AZ -1 1 1 bYZ 0
A’ -1 al 1] 1 | ble0
cl c2 c3 [q'2 143 (42! [423 ] &3 432 | 2 (min)
Where all identity matrices I are of order m.
In this case, the subproblems to be solved are
(35)
'Minimize 2! satisfying
W so, y2s0 130
a(t) /
Vo, 12 13 red) |
!A BE e Imy + Imy = b
Lclxl + [dl% ¢ 2%e-1))yt% + [al? + 23 (e-1]1y!? = zlimin)
S 2 .
Minimize Z~ satisfying
x2 2 0, y21 2 0, yZ3 20
b(t)
2.2 21 23 _ =2
P ATNT 4+ Imy + Imy = b
|
c?'x2 + [d?'1 + 1rl(t)]y21 + [d23 + 1'r3(t-l)]y23 S ZZ (min)
\
L — 3 E7
Minimize Z°~ satisfying
x3 2 0, y31 2 0, y3z 20
c(t) .
A3x3 + 1 y31 + 1 y32 g b3
m m
c3x3 + [d31 + rrl(t)]y31 + [d32 + nz(t)]y32 = Z3 (min)

\
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-~

where b, [)2, and t~)3 are arbitrary positive vectors, and ﬂl(t),
nz(t) and n3(t) are optimal simplex multipliers to the subproblems
a(t), b(t) and c(t) respectively.

It should be noted that the above subproblems can be further

simplified by introducing importation cost vectors dk(t) defined, for

instance for k =1, by

d}(t) - min( d}z + njz(t-l), al3

o n;’(t-l)) forall je M
j

With this simplification subproblem a(t) becomes

‘Minimize Zl subject to

| x'z20 ylzo
(36) a (t)
Alxl + Iyl = 51
L clxl * dly1 = Z1 (min)

Thus, the subproblems have the same form as those described in the
preceding sections, with the exception that a kind of indicator vector

has to be set up to determine the origin of every importation vector.
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CHAPTER IlI

DECOMPOSITION OF TWO INTERCONNECTED LEONTIEF

SYSTEMS BY SQUARE BLOCK TRIANGULARIZATION

3-1. Introduction.

From now on this report will be essentially devoted to the de-

velopment of a decomposition procedure which will be called decomposi-

tion by square block triangularization. The underlying idea of this method

1s to transform successively the linear program to be solved into a
series of equivalent linear programs which have the property that their
current feasible bases are square block triangular, i e., have the

form

Bl El : E2
BZ [ 3
0 0 4 B3

where Bl. B2 and B are square matrices. Under these conditions,
we shall see that improved solutions to these equivalent problems can
be easily found by solving smaller subproblems which will be referred

to as improvement subprograms. Thus, we shall see tnat, starting

with a feasible basis, we can, through a sequence of improvements,

solve the original problem by solving a series of smaller linear pro-

TR

-
.\"

R 'vm
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grams. We mention immediately that in practice the equivalent prob-
lems are never set up; they serve only for convenience of exposition.
As far as the improvement subprograms are concerned, their coef-
ficient matrix is not constant, and, therefore, they will have to be set
up at each iteration. However, it turns out that for the case of inter-
connected systems they are easily obtained by a slight modification of
the exchange matrices.

In this chapter we shall start the study of the decomposition
method by square block triangularization by developing it in connection
with the problem studied in the preceding chapter. There are two main
reasons for doing this:

(1) we finish the study started in the preceding chapter;

(ii) the method has remarkable properties in this case which

will simplify the exposition and illustrate once more the
ideal behavior of Leontief systems. This illustration is im-
portant because it will show very clearly what is the min-
imum exchange of information which will be required to
solve efficiently by decomposition a linear program based
on interconnected systems.

Consequently, we shall again be essentially concerned with

linear programming problems of the form
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Minimize Z| = clxl + dlyl + dzy2 + czx2
subject to xl 2 0, y1 z 0, yz 28 05 x2 20
(1)
' A xl + 1 yl -1 yz = bl
\ -Iyl+IyZ+A2x2=b2
m m

1 2 . ) . o
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